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Abstract—In image / video systems, the contrast adjustment
which manages to enhance the visual quality is nowadays an
important research topic. Yet very limited efforts have been
devoted to the exploration of image quality assessment (IQA)
for contrast adjustment. To address the problem, this paper
proposes a novel reduced-reference (RR) IQA metric with the
integration of bottom-up and top-down strategies. The former
one stems from the recently revealed free energy theory which
tells that the human visual system always seeks to understand
an input image by the uncertainty removal, while the latter
one is towards using the symmetric K-L divergence to compare
the histogram of the contrast-altered image with that of the
reference image. The bottom-up and top-down strategies are
lastly combined to derive the Reduced-reference Contrast-altered
Image Quality Measure (RCIQM). A comparison with numerous
existing IQA models is conducted on contrast related CID2013,
CCID2014, CSIQ, TID2008 and TID2013 databases, and results
validate the superiority of the proposed technique.1

Index Terms—Contrast alteration, image quality assessment
(IQA), reduced-reference (RR), hybrid parametric and non-
parametric model (HPNP), bottom-up, top-down

I. INTRODUCTION

The importance of visual media, which in most conditions
are provided to human consumers, have been realized lately.
As the users’ requirements for high-quality images / videos
are increasingly rising, a reliable system to evaluate, control
and improve the users’ quality of experience (QoE) is highly
required. This gives rise to the demand of faithful metrics of
image quality assessment (IQA) for predicting the quality in
accordance with human visual perception [1].

With respect to the accessibility of the original references,
objective IQA metrics are mostly classified into three types: 1)
full-reference (FR); 2) reduced-reference (RR); 3) no-reference
(NR). Depending on the supposition of structural variations
being extremely vital in quality perception, the last few years
have witnessed the emergence of a vast majority of FR IQA
metrics [2-6]. Under the condition of partial reference image or
several extracted features being available as side information,
RR-IQA has a broader range of practical scenarios. Guided
by the recent discovery of free energy theory [7], we lately
designed the free energy based distortion metric (FEDM) [8]
by simulating the internal generative model of human brain to
detect input visual signals. Exploiting a set of filters and valid
pooling strategy, structural degradation model (SDM) [9] has

1This work was supported in part by NSFC (61025005, 61371146,
61221001, 61390514, 61402547) and Macau Science and Technology De-
velopment Fund under grant FDCT/046/2014/A1.

managed to modify FR SSIM into valid RR IQA techniques
with only a few numbers as RR information.

Despite the prosperity and successfulness of IQA studies,
very limited efforts have been devoted to the field of IQA with
contrast change [10]. Moreover, existing IQA algorithms do
not work validly in this field. As a matter of fact, contrast is an
important research topic [11], which has practical applications
such as contrast enhancement technologies [12-13]. This mo-
tivates the design of a novel dedicated contrast-changed image
database (CID2013) [14], including 400 contrast-changed im-
ages by mean shifting and four kinds of transfer mappings,
and its advanced version (CCID2014) [15].

In this paper we further dig into the issue of contrast-
changed IQA, and develop a new RR IQA model with the
combination of bottom-up and top-down strategies. Relative
to the frequently seen distortion types, e.g. JPEG / JPEG2000
compressions, the human visual sensation of image contrast
(mainly including brightness and contrast alteration) is more
prone to the aesthetic quality assessment [16], and therefore
inclines to the measurement in visual and psychological fields.
A recently revealed free energy principle illustrates that the
HVS always tries to perceive a visual signal by reducing the
uncertain portion and measures the psychovisual quality as
the agreement between an image and its output of the internal
generative model. With this, we evaluate the visual quality
of contrast-altered images in the bottom-up model based on
the internal generative mechanism, which is constructed by
the non-parametric autoregressive (AR) model via perceptual
information for weighting.

On the other hand, as pointed out in several existing con-
trast enhancement methods [12], the histogram modification
can result in the contrast adjustment and largely influence
users’ experiences. The top-down strategy aims to compare
two distances between histograms; one is of the contrast-
adjusted image and its original counterpart, and the other is
of the contrast-altered image and the one created from the
original image through histogram equalization. The Kullback-
Leibler (K-L) divergence, one of the most popular information-
theoretic “distances” comparing two probability distributions,
is naturally taken into account. But the K-L divergence is
non-symmetric and brings unstable results in calculation. So
we use the symmetrized and smoothed Jensen-Shannon (JS)
divergence [17] to compute the two distances stated above.
Finally, the bottom-up and top-down strategies are combined
to develop the Reduced-reference Contrast-changed Image
Quality Measure (RCIQM), whose superiority is verified over
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existing visual quality evaluators.
The remainder of this paper is organized as follows. In

Section II, we combine the bottom-up and top-down models
to derive the RCIQM metric. Section IV conducts comparative
studies of our measure with numerous existing FR- and RR-
IQA methods on CID2013 [14], CCID2014 [15], CSIQ [18],
TID2008 [19], TID2013 [20] databases, and then reports and
discusses the results. Section IV concludes this paper.

II. PROPOSED RCIQM METRIC

Although there exist a large quantity of IQA techniques,
none of them is able to acquire satisfied correlation perfor-
mance. Therefore, we in this paper concentrate on the IQA of
contrast alteration.

A. Bottom-Up Strategy

In the research of aesthetic quality assessment [21], it is
argued that people would prefer a visual signal with balanced
lighting and proper contrast. Furthermore, in comparison to the
typical distortion types, e.g. image / video coding, the HVS
perception to image contrast, which is affected by luminance
and contrast variation, is more prone to the assessment of
aesthetic quality and thus to the visual and psychological mea-
surement [16]. So we first establish the bottom-up model based
on the free energy principle, which generates an approximate
estimation of the psychovisual quality [8].

According to the analysis in [8], there exists a gap between
the external input signal and its generative-model-explainable
part highly connecting to the psychovisual quality, which can
be used to assess contrast-changed images. The free energy is
the gap (i.e. the error map) between the input visual signal and
its output best explanation inferred by the internal generative
model. In the error map, larger-value regions are what cannot
be well explained by the generative model, whereas smaller-
value pixels are what can be easily described. This error map
is obtained by minimizing free energy.

The internal generative model is defined to be a new hybrid
parametric and non-parametric (HPNP) model, which fuses
the linear AR model with the bi-lateral filtering. The first AR
model is simple and it can simulate a wide range of natural
scenes by varying its parameters. Particularly, the AR model
is expressed by

yi = Yk(yi)ααα+ εi (1)

where yi is the value of a pixel at location xi, Yk(yi) defines k
member neighborhood vector of yi, ααα = (α1, α2, ..., αk)T is a
vector of AR coefficients, and εi is a difference term between
truth values and predictions. We use the method in [8] to find
the solution of ααα for each pixel.

The AR model is sometimes unstable at image edges. So we
further take advantage of the bi-lateral filtering [22], which is
a non-linear filtering of good edge-preserving ability. Also, the
bi-lateral filtering just has two variables, making it convenient
to control. We define this filtering by

yi = Yk(yi)βββ + ε′i (2)

where βββ = (β1, β2, ..., βk)T is a vector of bi-lateral filtering
coefficients, and ε′i is an error term. The βββ is manipulated by
the spatial Euclidean distance between xi and xj as well as
the photometric distance between yi and yj , referring to the
definition in [22].

In the following, the HPNP model fuses the merits of both
parametric AR model and non-parametric bi-lateral filtering,
and thus generate the estimation of ȳi to be

ȳi = γ · Yk(yi)α̂αα+ (1− γ) · Yk(yi)βββ (3)

where γ is used for adjusting the relative contribution of the
AR model and the bi-lateral filtering. Generally, salient regions
attract much attention and thus highly influence the visual
quality. This paper incorporates the luminance, contrast and
structural information, as defined in [2], for weighting:

wi = l(yi, ȳi) · c(yi, ȳi) · s(yi, ȳi), (4)

and the estimation error of the gap between the real scene and
brain’s prediction for the local pixel at xi is evaluated by

ēi = wi(yi − ȳi). (5)

For the original image Io, the point-wise error ēi can be
computed using Eqs. (1)-(5) to get the error map Eo. The free
energy of this error map is measured by entropy:

H(Eo) = −
∑

pi(Eo) log pi(Eo) (6)

where pi(Eo) is the probability density of grayscale i in the
error map Eo. With the same manner, we measure entropy of
H(Ec) for the contrast-changed image Ic. The psychovisual
quality of Ic compared to Io within the bottom-up strategy is
finally defined as their difference:

Qbu = H(Eo)−H(Ec). (7)

In practice, the kernel of the bottom-up strategy lies in
the HPNP model for approximating the internal generative
model in human brain. Images with high contrast and visual
quality usually have an abundant number of valuable details.
Our HPNP model is of different description abilities between
low- and high-complexity visual signals. For a fixed input
image with its free energy H(Eo), the positive contrast change
will increase the visual quality by revealing undiscernible
details. This renders the designed HPNP model inefficient to
characterize the contrast-altered image, and thus makes its free
energy H(Ec) higher than H(Eo) and Qbu lower than zero.
On the contrary, the negative contrast change will decrease
the visual quality by concealing details, which leads to the
associated free energy H(Ec) smaller than H(Eo) and Qbu
larger than zero.

B. Top-Down Strategy

One of important applications related to contrast alteration
is the familiar contrast enhancement technology, which can be
treated as the positive contrast change for validly advancing
the contrast and raising the visual quality of an input image.
Broadly speaking, contrast enhancement aims to generates a
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more visually-pleasing or informative image or both. Typical
viewers describe the enhanced images as if a curtain of fog
has been removed from the picture.

In [12], the authors have provided some suggestions to
contrast enhancement, namely the enhanced image should be
not far from its original one, and they smartly provided a
compromise scheme. Instead of using the uniformly distributed
histogram hu as the target histogram, their goal is to find a
modified histogram h̃ that is near to hu as desired, but also not
far from the original image histogram ho. This is a bi-criteria
optimization problem, and can be formulated as a weighted
sum of the two objectives:

h̃ = arg min
h
‖h− ho‖+ φ‖h− hu‖ (8)

where h̃, h, ho, hu ∈ R256×1, and φ is a control parameter
varying over [0,∞).

Enlightened by Eq. (8), we in the top-down strategy focus
our attention on measuring two distances; one is between the
histogram hc of the contrast-changed image and ho, and the
other is between hc and hu. Nonetheless, the construction of
the top-down model is not straightforward. Firstly, we find that
hu is not a good choice, since the histograms of most images
cannot be distributed uniformly after HE due to various image
contents or scenes. Instead, this paper applies the equalized
histogram he that is produced from ho using HE. Secondly,
it is important to note that the free energy in the bottom-up
strategy is measured by entropy, so we had better evaluate
the aforesaid two distances with the same dimension for the
combination of bottom-up and top-down models to predict the
visual quality score of the contrast-adjusted image. The K-L
divergence is of the expected dimension. Given two probability
densities p0 and p1, the K-L divergence is defined as

DKL(p1‖p0) =

∫
p1(x) log

p1(x)

p0(x)
dx. (9)

This K-L divergence is however non-symmetric and easy
to bring some troubles in real applications. Simple examples
illustrate that the ordering of the arguments in the K-L distance
might yield substantially different results. We resort to the
symmetric K-L divergence accordingly. In [17], the authors
have summarized many symmetric forms of K-L divergence,
e.g. algebraic mean and geometric mean. Here we consider
using the symmetrized and smoothed Jensen-Shannon (JS)
divergence as follows:

DJS(p0, p1) =
1

2
DKL(p0‖p̄) +

1

2
DKL(p1‖p̄) (10)

with p̄ = 1
2 (p0 + p1).

As a consequence, given three probability densities po, pe
and pc for an original image and its HE and contrast-altered
counterparts, the quality of Ic compared to Io within the top-
down part is determined by

Qtd = DJS(pc, po) + sDJS(pc, pe) (11)

where s is a fixed weighting parameter for altering the relative
importance between the above two distances. The analyses

Fig. 1. The flowchart of the proposed RCIQM algorithm.

in the histogram modification method point out that proper-
contrast images should be a good tradeoff between the original
image histogram and the uniformly distributed one. Our top-
down model is properly developed for this, and it can thereby
judge the quality levels of contrast-changed images.

C. The Combination Stage

Popular contrast enhancement technologies are devoted to
highlighting undiscernible details [13] or redistributing image
histogram [12]. Given an image, the former bottom-up model
aims to estimate how much detailed information is contained,
while the latter top-down model is to measure whether the
histogram is properly distributed. From the viewpoint of
working, these two models play complementary roles. Hence
we fuse bottom-up and top-down strategies to approximate the
HVS perception to the contrast-altered image quality. Since
the quality measures based on the two models are of the same
dimension (i.e. entropy) in our research, they can be directly
integrated. The RCIQM is lastly defined to be a simply linear
function combining the two quality predictions in bottom-up
and top-down parts:

RCIQM = Qbu + tQtd (12)

where t is a constant weight that is used to control the relative
contribution between the bottom-up and top-down strategies.
All the parameters used in the proposed RCIQM model have
fixed values. We present the flowchart in Fig. 1 for helping
readers to readily understand the RCIQM metric. Our source
code will be released soon.

Furthermore, we want to discuss why the proposed RCIQM
is a RR IQA metric. In the bottom-up model, the RR feature
only includes one single number of the free energy H(Eo),
and two histograms ho and he are required to transmitted as
the ancillary information in the top-down part. In reality, he
is the output of the equalized ho. So the RR information used
in RCIQM just includes H(Eo) and ho (totally 257 numbers),
far less than the size of the original image. Besides, a supple-
mentary specification is that, according to the convention, this
paper utilizes different signs (e.g. po and ho, pe and he) but
with the same meaning.
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TABLE I
PERFORMANCE COMPARISONS ON THE FIVE CONTRAST RELATED DATABASES. WE HIGHLIGHT THE TOP THREE METRICS.

Metrics Type CID2013 (400) CCID2014 (655) CSIQ (116) TID2008 (200) TID2013 (250) Weighted average
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

PSNR FR 0.6503 0.6649 0.6832 0.6743 0.9002 0.8621 0.5131 0.5207 0.5071 0.5425 0.6425 0.6462
SSIM FR 0.8119 0.8132 0.8256 0.8136 0.7450 0.7397 0.5057 0.4877 0.5658 0.4905 0.7369 0.7182
GSI FR 0.8353 0.8372 0.8073 0.7768 0.9325 0.9354 0.6739 0.5126 0.6665 0.4985 0.7850 0.7275
LTG FR 0.8656 0.8605 0.8384 0.7901 0.9560 0.9414 0.6795 0.4655 0.6749 0.4639 0.8087 0.7279
SDM RR 0.7158 0.6145 0.7360 0.6733 0.9175 0.9141 0.7817 0.7378 0.5831 0.3482 0.7261 0.6338
RIQMC RR 0.8995 0.9005 0.8726 0.8465 0.9652 0.9579 0.8585 0.8095 0.8651 0.8044 0.8829 0.8567
RCIQM RR 0.9187 0.9203 0.8845 0.8565 0.9645 0.9569 0.8807 0.8578 0.8866 0.8541 0.8985 0.8792

III. EXPERIMENTAL RESULTS

In this paper, using the five contrast related CID2013,
CCID2014, CSIQ, TID2008, and TID2013 databases, we
validate the proposed RCIQM algorithm and compare with
an enormous number of classical and state-of-the-art IQA
metrics: 1) Classical FR IQA: PSNR and SSIM [2]; 2) State-
of-the-art FR IQA: GSI [4] and LTG [5]; 3) Recently devised
RR IQA: SDM [9] and RIQMC [15].

First we compute the objective prediction scores of each
testing IQA models, and use the nonlinear regression to map
those scores to subjective ratings with the five-parameter
logistic function [23]:

q(ε) = φ1

(
1

2
− 1

1 + eφ2(ε−φ3)

)
+ φ4ε+ φ5 (13)

where ε and q(ε) respectively indicate the input score and the
mapped score, and φj (j = 1, . . . , 5) are free parameters to
be decided. We then make use of Pearson linear correlation
coefficient (PLCC) and Spearman rank-order correlation co-
efficient (SRCC) to compute the performance. A value close
to 1 for PLCC and SRCC means superior correlation with
subjective opinions. Table I presents the performance of our
RCIQM and six models. Across the five databases, we further
calculate the database size-weighted average, whose results are
also reported in Table I.

Referring to the nature of our proposed metric and the
results in Table I, we give two conclusions. First, it is apparent
that our metric achieves very exciting result on each database
and the average. We notice that only the proposed RCIQM
technique has acquired the SRCC values greater than 0.92 on
the CID2013 database, and larger than 0.85 on the large-scale
CCID2014, TID2008 and TID2013 databases. Although a few
IQA models (e.g. FEDM) do well in the CSIQ database, our
RCIQM is also of the highest performance, even higher than
0.95 in the accuracy and monotonic measure.

Second, as compared to FR- and RR-IQA algorithms tested
in this paper, it can be readily observed that the proposed
RCIQM is of the optimal performance on average, clearly
better than the second-place RIQMC and third-place LTG
methods. In fact, almost all FR and RR IQA methods assume
that the reference image is prefect. But there exist contrast-
changed images produced by the positive contrast alteration
have better quality than their original ones, and this leads to
serious deterioration in the performance of FR and RR IQA
techniques when assessing contrast-altered images.

IV. CONCLUSION

In this paper, we have introduced a new RCIQM metric
with bottom-up and top-down strategies. Considering that the
visual quality of the contrast-altered image is highly connected
to the psychovisual mechanism in human brain, the bottom-up
strategy applies the HPNP model with perceptual information
for weighting. The top-down strategy compares the histogram
of the contrast-changed image with those of the original
and equalized ones with K-L divergence. Results verify the
superiority of our RCIQM over state-of-the-art competitors.
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